

Pluto Math Problems

On July 14, 2015, NASA's New Horizons spacecraft sped past Pluto—a destination that took nearly nine and a half years to reach—and collected scientific data along with images of the dwarf planet.

Through careful measurements of new images, scientists determined that Pluto is actually larger than previously thought: 2,370 kilometers in diameter.

Because of the orbital interactions between Pluto and its moon Charon, Pluto's mass is well known and understood (1.31 x 10^{22} kg). Having a more precise diameter gives scientists the ability to more accurately calculate Pluto's average density. This is important information for scientists because it helps them understand the composition of Pluto.

- Find the radius(r) of Pluto.
 2,370 kilometers ÷ 2 = 1,185 km
- 2. Find the circumference of Pluto. $C = 2 \pi r = 7,446 \text{ km}$
- 3. Find the surface area of Pluto. $SA = 4 \pi r^2 = 17,646,012 \text{ km}^2$
- 4. Find the volume of Pluto. $4/3 \text{ m r}^3 = 6,970,174,651 \text{ km}^3$
- 5. Find the density of Pluto in kg/m³. Convert volume in km³ to m³: $6,970,174,651 \times 1,000,000,000 = 6.970174651 \times 10^{18} \,\text{m}^3$ $1.31 \times 10^{22} \,\text{kg} / 6.970174651 \times 10^{18} \,\text{m}^3 = 1,879 \,\text{kg/m}^3$
- 6. How does this new density calculation compare to the previous calculation when Pluto's diameter was thought to be 2,302 km?
 Pluto's density is 172 kg/m³ less than previously thought.
- 7. Most rock has a density between 2,000-3,000 kg/m³ and ice at very cold temperatures has a density of 927 kg/m³. What can we conclude about Pluto's composition based on the new density measurement?

The new density measurement tells us that Pluto is more icy than previously believed.